
© Prentice Hall and Sun Microsystems Press. Personal use only.

Training courses from the book’s author:
http://courses.coreservlets.com/

• Personally developed and taught by Marty Hall
• Available onsite at your organization (any country)
• Topics and pace can be customized for your developers
• Also available periodically at public venues
• Topics include Java programming, beginning/intermediate servlets

and JSP, advanced servlets and JSP, Struts, JSF/MyFaces, Ajax,
GWT, Ruby/Rails and more. Ask for custom courses!

INCLUDING FILES
AND APPLETS
IN JSP PAGES

Topics in This Chapter

• Using jsp:include to include pages at request time

• Using <%@ include ... %> (the include directive)
to include files at page translation time

• Understanding why jsp:include is usually better
than the include directive

• Using jsp:plugin to include applets for the Java
Plug-in

373© Prentice Hall and Sun Microsystems Press. Personal use only.

Training courses from the book’s author:
http://courses.coreservlets.com/

• Personally developed and taught by Marty Hall
• Available onsite at your organization (any country)
• Topics and pace can be customized for your developers
• Also available periodically at public venues
• Topics include Java programming, beginning/intermediate servlets

and JSP, advanced servlets and JSP, Struts, JSF/MyFaces, Ajax,
GWT, Ruby/Rails and more. Ask for custom courses!

13

JSP has three main capabilities for including external pieces into a JSP document:

• The jsp:include action. The jsp:include action lets you
include the output of a page at request time. Its main advantage is that
it saves you from changing the main page when the included pages
change. Its main disadvantage is that since it includes the output of
the secondary page, not the secondary page’s actual code as with the
include directive, the included pages cannot use any JSP constructs
that affect the main page as a whole. The advantages generally far
outweigh the disadvantages, and you will almost certainly use it much
more than the other inclusion mechanisms. Use of jsp:include is
discussed in Section 13.1.

• The include directive. This construct lets you insert JSP code into
the main page before that main page is translated into a servlet. Its
main advantage is that it is powerful: the included code can contain
JSP constructs such as field definitions and content-type settings that
affect the main page as a whole. Its main disadvantage is that it is hard
to maintain: you have to update the main page whenever any of the
included pages change. Use of the include directive is discussed in
Section 13.2.

• The jsp:plugin action. Although this book is primarily about
server-side Java, client-side Java in the form of Web-embedded
applets continues to play a role, especially within corporate intranets.
The jsp:plugin element is used to insert applets that use the Java
Plug-in into JSP pages. Its main advantage is that it saves you from

F
or additional inform

ation, please see:
• T

he section on T
iles in Struts tutorial at http://coreservlets.com

/
• T

he section on F
acelets in JSF

 tutorial at http://coreservlets.com
/

Chapter 13 ■ Including Files and Applets in JSP Pages374

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

writing long, tedious, and error-prone OBJECT and EMBED tags in your
HTML. Its main disadvantage is that it applies to applets, and applets
are relatively infrequently used. Use of jsp:plugin is discussed in
Section 13.4.

13.1 Including Pages at Request Time:
The jsp:include Action

Suppose you have a series of pages, all of which have the same navigation bar, contact
information, or footer. What can you do? Well, one common “solution” is to cut and
paste the same HTML snippets into all the pages. This is a bad idea because when
you change the common piece, you have to change every page that uses it. Another
common solution is to use some sort of server-side include mechanism whereby the
common piece gets inserted as the page is requested. This general approach is a good
one, but the typical mechanisms are server specific. Enter jsp:include, a portable
mechanism that lets you insert any of the following into the JSP output:

• The content of an HTML page.
• The content of a plain text document.
• The output of JSP page.
• The output of a servlet.

The jsp:include action includes the output of a secondary page at the time the
main page is requested. Although the output of the included pages cannot contain
JSP, the pages can be the result of resources that use servlets or JSP to create the out-
put. That is, the URL that refers to the included resource is interpreted in the nor-
mal manner by the server and thus can be a servlet or JSP page. The server runs the
included page in the usual way and places the output into the main page. This is pre-
cisely the behavior of the include method of the RequestDispatcher class (see
Chapter 15, “Integrating Servlets and JSP: The Model View Controller (MVC)
Architecture”), which is what servlets use if they want to do this type of file inclusion.

The page Attribute: Specifying
the Included Page

You designate the included page with the page attribute, as shown below. This
attribute is required; it should be a relative URL referencing the resource whose out-
put should be included.

<jsp:include page="relative-path-to-resource" />

13.1 Including Pages at Request Time: The jsp:include Action 375

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Relative URLs that do not start with a slash are interpreted relative to the location
of the main page. Relative URLs that start with a slash are interpreted relative to the
base Web application directory, not relative to the server root. For example, consider
a JSP page in the headlines Web application that is accessed by the URL
http://host/headlines/sports/table-tennis.jsp. The table-tennis.jsp file is in the
sports subdirectory of whatever directory is used by the headlines Web applica-
tion. Now, consider the following two include statements.

<jsp:include page="bios/cheng-yinghua.jsp" />
<jsp:include page="/templates/footer.jsp" />

In the first case, the system would look for cheng-yinghua.jsp in the bios subdi-
rectory of sports (i.e., in the sports/bios sub-subdirectory of the main directory of
the headlines application). In the second case, the system would look for
footer.jsp in the templates subdirectory of the headlines application, not in the
templates subdirectory of the server root. The jsp:include action never causes
the system to look at files outside of the current Web application. If you have trouble
remembering how the system interprets URLs that begin with slashes, remember
this rule: they are interpreted relative to the current Web application whenever the
server handles them; they are interpreted relative to the server root only when the
client (browser) handles them. For example, the URL in

<jsp:include page="/path/file" />

is interpreted within the context of the current Web application because the server
resolves the URL; the browser never sees it. But, the URL in

is interpreted relative to the server’s base directory because the browser resolves the
URL; the browser knows nothing about Web applications. For information on Web
applications, see Section 2.11.

Core Note

URLs that start with slashes are interpreted differently by the server than
by the browser. The server always interprets them relative to the current
Web application. The browser always interprets them relative to the
server root.

Finally, note that you are permitted to place your pages in the WEB-INF directory.
Although the client is prohibited from directly accessing files in this directory, it is
the server, not the client, that accesses files referenced by the page attribute of

Chapter 13 ■ Including Files and Applets in JSP Pages376

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

jsp:include. In fact, placing the included pages in WEB-INF is a recommended
practice; doing so will prevent them from being accidentally accessed by the client
(which would be bad, since they are usually incomplete HTML documents).

Core Approach

To prevent the included files from being accessed separately, place them
in WEB-INF or a subdirectory thereof.

XML Syntax and jsp:include
The jsp:include action is one of the first JSP constructs we have seen that has
only XML syntax, with no equivalent “classic” syntax. If you are unfamiliar with
XML, note three things:

• XML element names can contain colons. So, do not be thrown off
by the fact that the element name is jsp:include. In fact, the
XML-compatible version of all standard JSP elements starts with the
jsp prefix (or namespace).

• XML tags are case sensitive. In standard HTML, it does not matter
if you say BODY, body, or Body. In XML, it matters. So, be sure to use
jsp:include in all lower case.

• XML tags must be explicitly closed. In HTML, there are container
elements such as H1 that have both start and end tags (<H1> ...
</H1>) as well as standalone elements such as IMG or HR that have no
end tags (<HR>). In addition, the HTML specification defines the end
tags of some container elements (e.g., TR, P) to be optional. In XML,
all elements are container elements, and end tags are never optional.
However, as a convenience, you can replace bodyless snippets such as
<blah></blah> with <blah/>. So when using jsp:include, be
sure to include that trailing slash.

The flush Attribute
In addition to the required page attribute, jsp:include has a second attribute:
flush, as shown below. This attribute is optional; it specifies whether the output
stream of the main page should flushed before the inclusion of the page (the default
is false). Note, however, that in JSP 1.1, flush was a required attribute and the
only legal value was true.

<jsp:include page="relative-path-to-resource" flush="true" />

13.1 Including Pages at Request Time: The jsp:include Action 377

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

A News Headline Page
As an example of a typical use of jsp:include, consider the simple news summary
page shown in Listing 13.1. Page developers can change the news items in the files
Item1.html through Item3.html (Listings 13.2 through 13.4) without having to update
the main news page. Figure 13–1 shows the result.

Notice that the included pieces are not complete Web pages. The included pages
can be HTML files, plain text files, JSP pages, or servlets (but with JSP pages and
servlets, only the output of the page is included, not the actual code). In all cases,
however, the client sees only the composite result. So, if both the main page and the
included pieces contain tags such as DOCTYPE, BODY, etc., the result will be illegal
HTML because these tags will appear twice in the result that the client sees. With
servlets and JSP, it is always a good habit to view the HTML source and submit the
URL to an HTML validator (see Section 3.5, “Simple HTML-Building Utilities”).
When jsp:include is used, this advice is even more important because beginners
often erroneously design both the main page and the included page as complete
HTML documents.

Core Approach

Do not use complete HTML documents for your included pages. Include
only the HTML tags appropriate to the place where the included files
will be inserted.

Listing 13.1 WhatsNew.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>What's New at JspNews.com</TITLE>
<LINK REL=STYLESHEET
 HREF="JSP-Styles.css"
 TYPE="text/css">
</HEAD>
<BODY>
<TABLE BORDER=5 ALIGN="CENTER">
 <TR><TH CLASS="TITLE">
 What's New at JspNews.com</TABLE>

Chapter 13 ■ Including Files and Applets in JSP Pages378

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

<P>
Here is a summary of our three most recent news stories:

 <jsp:include page="/WEB-INF/Item1.html" />
 <jsp:include page="/WEB-INF/Item2.html" />
 <jsp:include page="/WEB-INF/Item3.html" />

</BODY></HTML>

Listing 13.2 /WEB-INF/Item1.html

Bill Gates acts humble. In a startling and unexpected
development, Microsoft big wig Bill Gates put on an open act of
humility yesterday.
More details...

Listing 13.3 /WEB-INF/Item2.html

Scott McNealy acts serious. In an unexpected twist,
wisecracking Sun head Scott McNealy was sober and subdued at
yesterday's meeting.
More details...

Listing 13.4 /WEB-INF/Item3.html

Larry Ellison acts conciliatory. Catching his competitors
off guard yesterday, Oracle prez Larry Ellison referred to his
rivals in friendly and respectful terms.
More details...

Listing 13.1 WhatsNew.jsp (continued)

13.1 Including Pages at Request Time: The jsp:include Action 379

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Figure 13–1 Including files at request time lets you update the individual files without
changing the main page.

The jsp:param Element:
Augmenting Request Parameters

The included page uses the same request object as the originally requested page. As
a result, the included page normally sees the same request parameters as the main
page. If, however, you want to add to or replace those parameters, you can use the
jsp:param element (which has name and value attributes) to do so. For example,
consider the following snippet.

<jsp:include page="/fragments/StandardHeading.jsp">

<jsp:param name="bgColor" value="YELLOW" />

</jsp:include>

Now, suppose that the main page is invoked by means of http://host/path/
MainPage.jsp?fgColor=RED. In such a case, the following list summarizes the results
of various getParameter calls.

• In main page (MainPage.jsp). (Regardless of whether the
getParameter calls are before or after the file inclusion.)

• request.getParameter("fgColor") returns "RED".
• request.getParameter("bgColor") returns null.

Chapter 13 ■ Including Files and Applets in JSP Pages380

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

• In included page (StandardHeading.jsp).

• request.getParameter("fgColor") returns "RED".
• request.getParameter("bgColor") returns "YELLOW".

If the main page receives a request parameter that is also specified with the
jsp:param element, the value from jsp:param takes precedence only in the
included page.

13.2 Including Files at Page Translation
Time: The include Directive

You use the include directive to include a file in the main JSP document at the
time the document is translated into a servlet (which is typically the first time it is
accessed). The syntax is as follows:

<%@ include file="Relative URL" %>

Think of the include directive as a preprocessor: the included file is inserted
character for character into the main page, then the resultant page is treated as a sin-
gle JSP page. So, the fundamental difference between jsp:include and the
include directive is the time at which they are invoked: jsp:include is invoked
at request time, whereas the include directive is invoked at page translation time.
However, there are more implications of this difference than you might first think.
We summarize them in Table 13.1.

Table 13.1 Differences Between jsp:include and the include Directive

jsp:include Action include Directive

What does basic syntax look
like?

<jsp:include
page="..." />

<%@ include
file="..." %>

When does inclusion occur? Request time Page translation time

What is included? Output of page Actual content of file

How many servlets result? Two (main page and
included page each become
a separate servlet)

One (included file is
inserted into main page,
then that page is translated
into a servlet)

13.2 Including Files at Page Translation Time: The include Directive 381

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

There are many ramifications of the fact that the included file is inserted at page
translation time with the include directive (<%@ include ... %>), not at
request time as with jsp:include. However, there are two really important impli-
cations: maintenance and power. We discuss these two items in the following two
subsections.

Maintenance Problems with
the include Directive

The first ramification of the inclusion occurring at page translation time is that it is
much more difficult to maintain pages that use the include directive than is the
case with jsp:include. With the include directive (<%@ include ... %>), if
the included file changes, all the JSP files that use it may need to be updated. Servers
are required to detect when a JSP page changes and to translate it into a new servlet
before handling the next request. Unfortunately, however, they are not required to
detect when the included file changes, only when the main page changes. Servers are
allowed to support a mechanism for detecting that an included file has changed (and
then recompiling the servlet), but they are not required to do so. In practice, few do.
So, with most servers, whenever an included file changes, you have to update the
modification dates of each JSP page that uses the file.

This is a significant inconvenience; it results in such serious maintenance prob-
lems that the include directive should be used only in situations in which
jsp:include would not suffice. Some developers have argued that using the

Can included page set
response headers that affect
the main page?

No Yes

Can included page define
fields or methods that main
page uses?

No Yes

Does main page need to be
updated when included
page changes?

No Yes

What is the equivalent serv-
let code?

include method of
RequestDispatcher

None

Where is it discussed? Section 13.1 Section 13.2 (this section)

Table 13.1 Differences Between jsp:include and the include Directive (continued)

jsp:include Action include Directive

Chapter 13 ■ Including Files and Applets in JSP Pages382

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

include directive results in code that executes faster than it would with the
jsp:include action. Although this may be true in principle, the performance dif-
ference is so small that it is difficult to measure, and the maintenance advantages of
jsp:include are so great that it is virtually always preferred when both options are
available. In fact, some developers find the maintenance burden of the include
directive so onerous that they avoid it altogether. Perhaps this is an overreaction, but,
at the very least, reserve the include directive for situations for which you really
need the extra power it affords.

Core Approach

For file inclusion, use jsp:include whenever possible. Reserve the
include directive (<%@ include ... %>) for cases in which the
included file defines fields or methods that the main page uses or when
the included file sets response headers of the main page.

Additional Power from
the include Directive

If the include directive results in hard-to-maintain code, why would anyone want
to use it? Well, that brings up the second difference between jsp:include and the
include directive. The include directive is more powerful. With the include
directive, the included file is permitted to contain JSP code such as response header
settings and field definitions that affect the main page. For example, suppose
snippet.jsp contained the following line of code:

<%! int accessCount = 0; %>

In such a case, you could do the following in the main page:

<%@ include file="snippet.jsp" %> <%-- Defines accessCount --%>

<%= accessCount++ %> <%-- Uses accessCount --%>

With jsp:include, of course, this would be impossible because of the unde-
fined accessCount variable; the main page would not translate successfully into a
servlet. Besides, even if it could be translated without error, there would be no point;
jsp:include includes the output of the auxiliary page, and snippet.jsp has no out-
put.

13.2 Including Files at Page Translation Time: The include Directive 383

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Updating the Main Page
With most servers, if you use the include directive and change the included file,
you also have to update the modification date of the main page. Some operating sys-
tems have commands that update the modification date without your actually editing
the file (e.g., the Unix touch command), but a simple portable alternative is to
include a JSP comment in the top-level page. Update the comment whenever the
included file changes. For example, you might put the modification date of the
included file in the comment, as below.

<%-- Navbar.jsp modified 9/1/03 --%>
<%@ include file="Navbar.jsp" %>

Core Warning

If you change an included JSP file, you may have to update the
modification dates of all JSP files that use it.

XML Syntax for the include Directive
The XML-compatible equivalent of

<%@ include file="..." %>

is

<jsp:directive.include file="..." />

When this form is used, both the main page and the included file must use
XML-compatible syntax throughout.

Example: Reusing Footers
As an example of a situation in which you would use the include directive instead
of jsp:include, suppose that you have a JSP page that generates an HTML snip-
pet containing a small footer that includes access counts and information about the
most recent accesses to the current page. Listing 13.5 shows just such a page.

Now suppose you have several pages that want to have footers of that type. You
could put the footer in WEB-INF (where it is protected from direct client access) and
then have the pages that want to use it do so with the following.

<%@ include file="/WEB-INF/ContactSection.jsp" %>

Chapter 13 ■ Including Files and Applets in JSP Pages384

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Listing 13.6 shows a page that uses this approach; Figure 13–2 shows the result.
“Hold on!” you say, “Yes, ContactSection.jsp defines some instance variables

(fields). And, if the main page used those instance variables, I would agree that you
would have to use the include directive. But, in this particular case, the main page
does not use the instance variables, so jsp:include should be used instead.
Right?” Wrong. If you used jsp:include here, then all the pages that used the
footer would see the same access count. You want each page that uses the footer to
maintain a different access count. You do not want ContactSection.jsp to be its own
servlet, you want ContactSection.jsp to provide code that will be part of each sepa-
rate servlet that results from a JSP page that uses ContactSection.jsp. You need the
include directive.

Listing 13.5 ContactSection.jsp

<%@ page import="java.util.Date" %>
<%-- The following become fields in each servlet that
 results from a JSP page that includes this file. --%>
<%!
private int accessCount = 0;
private Date accessDate = new Date();
private String accessHost = "<I>No previous access</I>";
%>
<P>
<HR>
This page © 2003
my-company.com.
This page has been accessed <%= ++accessCount %>
times since server reboot. It was most recently accessed from
<%= accessHost %> at <%= accessDate %>.
<% accessHost = request.getRemoteHost(); %>
<% accessDate = new Date(); %>

Listing 13.6 SomeRandomPage.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Some Random Page</TITLE>
<META NAME="author" CONTENT="J. Random Hacker">
<META NAME="keywords"
 CONTENT="foo,bar,baz,quux">

13.2 Including Files at Page Translation Time: The include Directive 385

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Figure 13–2 Result of SomeRandomPage.jsp. It uses the include directive so that it
maintains access counts and most-recent-hosts entries separately from any other pages that
use ContactSection.jsp.

<META NAME="description"
 CONTENT="Some random Web page.">
<LINK REL=STYLESHEET
 HREF="JSP-Styles.css"
 TYPE="text/css">
</HEAD>
<BODY>
<TABLE BORDER=5 ALIGN="CENTER">
 <TR><TH CLASS="TITLE">
 Some Random Page</TABLE>
<P>
Information about our products and services.
<P>
Blah, blah, blah.
<P>
Yadda, yadda, yadda.
<%@ include file="/WEB-INF/ContactSection.jsp" %>
</BODY></HTML>

Listing 13.6 SomeRandomPage.jsp (continued)

Chapter 13 ■ Including Files and Applets in JSP Pages386

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

13.3 Forwarding Requests
with jsp:forward

You use jsp:include to combine output from the main page and the auxiliary
page. Instead, you can use jsp:forward to obtain the complete output from the
auxiliary page. For example, here is a page that randomly selects either page1.jsp or
page2.jsp to output.

<% String destination;

if (Math.random() > 0.5) {

destination = "/examples/page1.jsp";

} else {

destination = "/examples/page2.jsp";

}

%>

<jsp:forward page="<%= destination %>" />

To use jsp:forward, the main page must not have any output. This brings up
the question, what benefit does JSP provide, then? The answer is, none! In fact, use
of JSP is a hindrance in this type of situation because a real situation would be more
complex, and complex code is easier to develop and test in a servlet than it is in a JSP
page. We recommend that you completely avoid the use of jsp:forward. If you want
to perform a task similar to this example, use a servlet and have it call the forward
method of RequestDispatcher. See Chapter 15 for details.

13.4 Including Applets for
the Java Plug-In

Early in the evolution of the Java programming language, the main application area
was applets (Java programs embedded in Web pages and executed by Web brows-
ers). Furthermore, most browsers supported the most up-to-date Java version. Now,
however, applets are a very small part of the Java world, and the only major browser
that supports the Java 2 platform (i.e., JDK 1.2–1.4) is Netscape 6 and later. This
leaves applet developers with three choices:

• Develop the applets with JDK 1.1 or even 1.02 (to support really old
browsers).

• Have users install version 1.4 of the Java Runtime Environment
(JRE), then use JDK 1.4 for the applets.

13.4 Including Applets for the Java Plug-In 387

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

• Have users install any version of the Java 2 Plug-in, then use Java 2 for
the applets.

The first option is the one generally chosen for applets that will be deployed to the
general public, because that option does not require users to install any special soft-
ware. You need no special JSP syntax to use this option: just use the normal HTML
APPLET tag. Just remember that .class files for applets need to go in the Web-acces-
sible directories, not WEB-INF/classes, because it is the browser, not the server, that
executes them. However, the lack of support for the Java 2 Platform imposes several
restrictions on these applets:

• To use Swing, you must send the Swing files over the network. This
process is time consuming and fails in Internet Explorer 3 and
Netscape 3.x and 4.01–4.05 (which only support JDK 1.02), since
Swing depends on JDK 1.1.

• You cannot use Java 2D.
• You cannot use the Java 2 collections package.
• Your code runs more slowly, since most compilers for the Java 2

platform are significantly improved over their 1.1 predecessors.

So, developers of complex applets for corporate intranets often choose one of the
second two options.

The second option is best if the users all have Internet Explorer 6 (or later) or
Netscape 6 (or later). With those browsers, version 1.4 of the JRE will replace the
Java Virtual Machine (JVM) that comes bundled with the browser. Again, you need
no special JSP syntax to use this option: just use the normal HTML APPLET tag. And
again, remember that .class files for applets need to go in the Web-accessible direc-
tories, not WEB-INF/classes, because it is the browser, not the server, that executes
them.

Core Approach

No matter what approach you use for applets, the applet .class files must
go in the Web-accessible directories, not in WEB-INF/classes. The
browser, not the server, uses them.

In large organizations, however, many users have earlier browser versions, and the
second choice is not a viable option. So, to address this problem, Sun developed a
browser plug-in for Netscape and Internet Explorer that lets you use the Java 2 plat-
form in a variety of browser versions. This plug-in is available at http://java.sun.com/
products/plugin/ and also comes bundled with JDK 1.2.2 and later. Since the plug-in

Chapter 13 ■ Including Files and Applets in JSP Pages388

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

is quite large (several megabytes), it is not reasonable to expect users on the WWW
at large to download and install it just to run your applets. On the other hand, it is a
reasonable alternative for fast corporate intranets, especially since applets can auto-
matically prompt browsers that lack the plug-in to download it.

Unfortunately, in some browsers, the normal APPLET tag will not work with the
plug-in, since these older browsers are specifically designed to use only their
built-in virtual machine when they see APPLET. Instead, you have to use a long and
messy OBJECT tag for Internet Explorer and an equally long EMBED tag for
Netscape. Furthermore, since you typically don’t know which browser type will be
accessing your page, you have to either include both OBJECT and EMBED (placing
the EMBED within the COMMENT section of OBJECT) or identify the browser type at
the time of the request and conditionally build the right tag. This process is straight-
forward but tedious and time consuming.

The jsp:plugin element instructs the server to build a tag appropriate for
applets that use the plug-in. This element does not add any Java capabilities to the
client. How could it? JSP runs entirely on the server; the client knows nothing about
JSP. The jsp:plugin element merely simplifies the generation of the OBJECT or
EMBED tags.

Core Note

The jsp:plugin element does not add any Java capability to the
browser. It merely simplifies the creation of the cumbersome OBJECT
and EMBED tags needed by the Java 2 Plug-in.

Servers are permitted some leeway in exactly how they implement jsp:plugin
but most simply include both OBJECT and EMBED. To see exactly how your server
translates jsp:plugin, insert into a page a simple jsp:plugin element with
type, code, width, and height attributes as in the following example. Then,
access the page from your browser and view the HTML source. For example, Listing
13.7 shows the HTML code generated by Tomcat for the following jsp:plugin
element.

<jsp:plugin type="applet"

 code="SomeApplet.class"

 width="300" height="200">

</jsp:plugin>

13.4 Including Applets for the Java Plug-In 389

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

The jsp:plugin Element

The simplest way to use jsp:plugin is to supply four attributes: type, code,
width, and height. You supply a value of applet for the type attribute and use
the other three attributes in exactly the same way as with the APPLET element, with
two exceptions: the attribute names are case sensitive, and single or double quotes
are always required around the attribute values. So, for example, you could replace

<APPLET CODE="MyApplet.class"

 WIDTH=475 HEIGHT=350>

</APPLET>

with

<jsp:plugin type="applet"

 code="MyApplet.class"

 width="475" height="350">

</jsp:plugin>

The jsp:plugin element has a number of other optional attributes. Most paral-
lel the attributes of the APPLET element. Here is a full list.

• type
For applets, this attribute should have a value of applet. However,
the Java Plug-in also permits you to embed JavaBeans components in
Web pages. Use a value of bean in such a case.

Listing 13.7 Code Generated by Tomcat for jsp:plugin

<object classid="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93"
width="300" height="200"
codebase="http://java.sun.com/products/plugin/1.2.2/jinst

all-1_2_2-win.cab#Version=1,2,2,0">
<param name="java_code" value="SomeApplet.class">
<param name="type" value="application/x-java-applet;">

<COMMENT>
<embed type="application/x-java-applet;" width="300" height="200"

pluginspage="http://java.sun.com/products/plugin/"
java_code="SomeApplet.class"

>
<noembed>
</COMMENT>
</noembed></embed>
</object>

Chapter 13 ■ Including Files and Applets in JSP Pages390

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

• code
This attribute is used identically to the CODE attribute of APPLET,
specifying the top-level applet class file that extends Applet or
JApplet.

• width
This attribute is used identically to the WIDTH attribute of APPLET,
specifying the width in pixels to be reserved for the applet.

• height
This attribute is used identically to the HEIGHT attribute of APPLET,
specifying the height in pixels to be reserved for the applet.

• codebase
This attribute is used identically to the CODEBASE attribute of
APPLET, specifying the base directory for the applets. The code
attribute is interpreted relative to this directory. As with the APPLET
element, if you omit this attribute, the directory of the current page is
used as the default. In the case of JSP, this default location is the
directory in which the original JSP file resided, not the system-specific
location of the servlet that results from the JSP file.

• align
This attribute is used identically to the ALIGN attribute of APPLET
and IMG, specifying the alignment of the applet within the Web page.
Legal values are left, right, top, bottom, and middle.

• hspace
This attribute is used identically to the HSPACE attribute of APPLET,
specifying empty space in pixels reserved on the left and right of the
applet.

• vspace
This attribute is used identically to the VSPACE attribute of APPLET,
specifying empty space in pixels reserved on the top and bottom of the
applet.

• archive
This attribute is used identically to the ARCHIVE attribute of APPLET,
specifying a JAR file from which classes and images should be loaded.

• name
This attribute is used identically to the NAME attribute of APPLET,
specifying a name to use for interapplet communication or for
identifying the applet to scripting languages like JavaScript.

• title
This attribute is used identically to the very rarely used TITLE
attribute of APPLET (and virtually all other HTML elements in
HTML 4.0), specifying a title that could be used for a tool-tip or for
indexing.

13.4 Including Applets for the Java Plug-In 391

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

• jreversion
This attribute identifies the version of the Java Runtime Environment
(JRE) that is required. The default is 1.2.

• iepluginurl
This attribute designates a URL from which the plug-in for Internet
Explorer can be downloaded. Users who don’t already have the
plug-in installed will be prompted to download it from this location.
The default value will direct the user to the Sun site, but for intranet
use you might want to direct the user to a local copy.

• nspluginurl
This attribute designates a URL from which the plug-in for Netscape
can be downloaded. The default value will direct the user to the Sun
site, but for intranet use you might want to direct the user to a local
copy.

The jsp:param and jsp:params Elements

The jsp:param element is used with jsp:plugin in a manner similar to the way
that PARAM is used with APPLET, specifying a name and value that are accessed from
within the applet by getParameter. There are two main differences, however.
First, since jsp:param follows XML syntax, attribute names must be lower case,
attribute values must be enclosed in single or double quotes, and the element must
end with />, not just >. Second, all jsp:param entries must be enclosed within a
jsp:params element.

So, for example, you would replace

<APPLET CODE="MyApplet.class"

 WIDTH=475 HEIGHT=350>

<PARAM NAME="PARAM1" VALUE="VALUE1">

<PARAM NAME="PARAM2" VALUE="VALUE2">

</APPLET>

with

<jsp:plugin type="applet"

 code="MyApplet.class"

 width="475" height="350">

<jsp:params>

<jsp:param name="PARAM1" value="VALUE1" />

<jsp:param name="PARAM2" value="VALUE2" />

</jsp:params>

</jsp:plugin>

Chapter 13 ■ Including Files and Applets in JSP Pages392

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

The jsp:fallback Element
The jsp:fallback element provides alternative text to browsers that do not sup-
port OBJECT or EMBED. You use this element in almost the same way as you would
use alternative text placed within an APPLET element. So, for example, you would
replace

<APPLET CODE="MyApplet.class"
 WIDTH=475 HEIGHT=350>

Error: this example requires Java.
</APPLET>

with

<jsp:plugin type="applet"
 code="MyApplet.class"
 width="475" height="350">

<jsp:fallback>
Error: this example requires Java.

</jsp:fallback>
</jsp:plugin>

A jsp:plugin Example
Listing 13.8 shows a JSP page that uses the jsp:plugin element to generate an
entry for the Java 2 Plug-in. Listing 13.9 shows the code for the applet itself (which
uses Swing, Java 2D, and the auxiliary classes of Listings 13.10 through 13.12). Fig-
ure 13–3 shows the result.

Listing 13.8 PluginApplet.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Using jsp:plugin</TITLE>
<LINK REL=STYLESHEET
 HREF="JSP-Styles.css"
 TYPE="text/css">
</HEAD>
<BODY>
<CENTER>
<TABLE BORDER=5>
 <TR><TH CLASS="TITLE">
 Using jsp:plugin</TABLE>

13.4 Including Applets for the Java Plug-In 393

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

<P>
<jsp:plugin type="applet"
 code="PluginApplet.class"
 width="370" height="420">
</jsp:plugin>
</CENTER></BODY></HTML>

Listing 13.9 PluginApplet.java

import javax.swing.*;

/** An applet that uses Swing and Java 2D and thus requires
 * the Java Plug-in.
 */

public class PluginApplet extends JApplet {
 public void init() {
 WindowUtilities.setNativeLookAndFeel();
 setContentPane(new TextPanel());
 }
}

Listing 13.10 TextPanel.java

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

/** JPanel that places a panel with text drawn at various angles
 * in the top part of the window and a JComboBox containing
 * font choices in the bottom part.
 */

public class TextPanel extends JPanel
 implements ActionListener {
 private JComboBox fontBox;
 private DrawingPanel drawingPanel;

 public TextPanel() {
 GraphicsEnvironment env =
 GraphicsEnvironment.getLocalGraphicsEnvironment();

Listing 13.8 PluginApplet.jsp (continued)

Chapter 13 ■ Including Files and Applets in JSP Pages394

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

 String[] fontNames = env.getAvailableFontFamilyNames();
 fontBox = new JComboBox(fontNames);
 setLayout(new BorderLayout());
 JPanel fontPanel = new JPanel();
 fontPanel.add(new JLabel("Font:"));
 fontPanel.add(fontBox);
 JButton drawButton = new JButton("Draw");
 drawButton.addActionListener(this);
 fontPanel.add(drawButton);
 add(fontPanel, BorderLayout.SOUTH);
 drawingPanel = new DrawingPanel();
 fontBox.setSelectedItem("Serif");
 drawingPanel.setFontName("Serif");
 add(drawingPanel, BorderLayout.CENTER);
 }

 public void actionPerformed(ActionEvent e) {
 drawingPanel.setFontName((String)fontBox.getSelectedItem());
 drawingPanel.repaint();
 }
}

Listing 13.11 DrawingPanel.java

import java.awt.*;
import java.awt.geom.*;
import javax.swing.*;

/** A window with text drawn at an angle. The font is
 * set by means of the setFontName method.
 */

class DrawingPanel extends JPanel {
 private Ellipse2D.Double circle =
 new Ellipse2D.Double(10, 10, 350, 350);
 private GradientPaint gradient =
 new GradientPaint(0, 0, Color.red, 180, 180, Color.yellow,
 true); // true means to repeat pattern
 private Color[] colors = { Color.white, Color.black };

Listing 13.10 TextPanel.java (continued)

13.4 Including Applets for the Java Plug-In 395

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

 public void paintComponent(Graphics g) {
 super.paintComponent(g);
 Graphics2D g2d = (Graphics2D)g;
 g2d.setPaint(gradient);
 g2d.fill(circle);
 g2d.translate(185, 185);
 for (int i=0; i<16; i++) {
 g2d.rotate(Math.PI/8.0);
 g2d.setPaint(colors[i%2]);
 g2d.drawString("jsp:plugin", 0, 0);
 }
 }

 public void setFontName(String fontName) {
 setFont(new Font(fontName, Font.BOLD, 35));
 }
}

Listing 13.12 WindowUtilities.java

import javax.swing.*;
import java.awt.*;

/** A few utilities that simplify using windows in Swing. */

public class WindowUtilities {

 /** Tell system to use native look and feel, as in previous
 * releases. Metal (Java) LAF is the default otherwise.
 */

 public static void setNativeLookAndFeel() {
 try {
 UIManager.setLookAndFeel
 (UIManager.getSystemLookAndFeelClassName());
 } catch(Exception e) {
 System.out.println("Error setting native LAF: " + e);
 }
 }

... // See www.coreservlets.com for remaining code.
}

Listing 13.11 DrawingPanel.java (continued)

Chapter 13 ■ Including Files and Applets in JSP Pages396

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Figure 13–3 Result of PluginApplet.jsp in Internet Explorer with the JDK 1.4 plug-in.

