
© Prentice Hall and Sun Microsystems Press. Personal use only.

Training courses from the book’s author:
http://courses.coreservlets.com/

• Personally developed and taught by Marty Hall
• Available onsite at your organization (any country)
• Topics and pace can be customized for your developers
• Also available periodically at public venues
• Topics include Java programming, beginning/intermediate servlets

and JSP, advanced servlets and JSP, Struts, JSF/MyFaces, Ajax,
GWT, Ruby/Rails and more. Ask for custom courses!

SERVLET BASICS

Topics in This Chapter

• The basic structure of servlets

• A simple servlet that generates plain text

• A servlet that generates HTML

• Servlets and packages

• Some utilities that help build HTML

• The servlet life cycle

• How to deal with multithreading problems

• Tools for interactively talking to servlets

• Servlet debugging strategies

65© Prentice Hall and Sun Microsystems Press. Personal use only.

Training courses from the book’s author:
http://courses.coreservlets.com/

• Personally developed and taught by Marty Hall
• Available onsite at your organization (any country)
• Topics and pace can be customized for your developers
• Also available periodically at public venues
• Topics include Java programming, beginning/intermediate servlets

and JSP, advanced servlets and JSP, Struts, JSF/MyFaces, Ajax,
GWT, Ruby/Rails and more. Ask for custom courses!

3

As discussed in Chapter 1, servlets are programs that run on a Web or application
server and act as a middle layer between a request coming from a Web browser or
other HTTP client and databases or applications on the HTTP server. Their job is to
perform the following tasks, as illustrated in Figure 3–1.

Figure 3–1 The role of Web middleware.

1. Read the explicit data sent by the client.
The end user normally enters this data in an HTML form on a Web
page. However, the data could also come from an applet or a custom
HTTP client program.

2. Read the implicit HTTP request data sent by the browser.
Figure 3–1 shows a single arrow going from the client to the Web
server (the layer in which servlets and JSP pages execute), but there
are really two varieties of data: the explicit data the end user enters in

Legacy Application

Java Application

Web Service

...

Database

Web ServerClient (End User)

JDBC

JNI

RMI

SOAP

...

(Servlets/JSP)

Chapter 3 ■ Servlet Basics66

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

a form and the behind-the-scenes HTTP information. Both types of
data are critical to effective development. The HTTP information
includes cookies, media types and compression schemes the browser
understands, and so forth; it is discussed in Chapter 5.

3. Generate the results.
This process may require talking to a database, executing an RMI or
CORBA call, invoking a Web service, or computing the response
directly. Your real data may be in a relational database. Fine. But your
database probably doesn’t speak HTTP or return results in HTML, so
the Web browser can’t talk directly to the database. The same argu-
ment applies to most other applications. You need the Web middle
layer to extract the incoming data from the HTTP stream, talk to the
application, and embed the results inside a document.

4. Send the explicit data (i.e., the document) to the client.
This document can be sent in a variety of formats, including text
(HTML or XML), binary (GIF images), Excel, or even a compressed
format like gzip that is layered on top of some other underlying for-
mat.

5. Send the implicit HTTP response data.
Figure 3–1 shows a single arrow going from the Web middle layer (the
servlet or JSP page) to the client, but there are really two varieties of
data sent: the document itself and the behind-the-scenes HTTP infor-
mation. Both types of data are critical to effective development. Send-
ing HTTP response data involves telling the browser or other client
what type of document is being returned (e.g., HTML), setting cook-
ies and caching parameters, and other such tasks. These tasks are dis-
cussed in Chapters 6–8.

In principle, servlets are not restricted to Web or application servers that handle
HTTP requests but can be used for other types of servers as well. For example, serv-
lets could be embedded in FTP or mail servers to extend their functionality. In prac-
tice, however, this use of servlets has not caught on, and we discuss only HTTP
servlets.

3.1 Basic Servlet Structure

Listing 3.1 outlines a basic servlet that handles GET requests. GET requests, for those
unfamiliar with HTTP, are the usual type of browser requests for Web pages. A
browser generates this request when the user enters a URL on the address line, fol-
lows a link from a Web page, or submits an HTML form that either does not specify

3.1 Basic Servlet Structure 67

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

a METHOD or specifies METHOD="GET". Servlets can also easily handle POST
requests, which are generated when someone submits an HTML form that specifies
METHOD="POST". For details on the use of HTML forms and the distinctions
between GET and POST, see Chapter 19 (Creating and Processing HTML Forms).

Servlets typically extend HttpServlet and override doGet or doPost, depend-
ing on whether the data is being sent by GET or by POST. If you want a servlet to take
the same action for both GET and POST requests, simply have doGet call doPost, or
vice versa.

Both doGet and doPost take two arguments: an HttpServletRequest and an
HttpServletResponse. The HttpServletRequest lets you get at all of the
incoming data; the class has methods by which you can find out about information
such as form (query) data, HTTP request headers, and the client’s hostname. The
HttpServletResponse lets you specify outgoing information such as HTTP status
codes (200, 404, etc.) and response headers (Content-Type, Set-Cookie, etc.).
Most importantly, HttpServletResponse lets you obtain a PrintWriter that
you use to send document content back to the client. For simple servlets, most of the
effort is spent in println statements that generate the desired page. Form data,
HTTP request headers, HTTP responses, and cookies are all discussed in the follow-
ing chapters.

Listing 3.1 ServletTemplate.java

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class ServletTemplate extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {

 // Use "request" to read incoming HTTP headers
 // (e.g., cookies) and query data from HTML forms.

 // Use "response" to specify the HTTP response status
 // code and headers (e.g., the content type, cookies).

 PrintWriter out = response.getWriter();
 // Use "out" to send content to browser.
 }
}

Chapter 3 ■ Servlet Basics68

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Since doGet and doPost throw two exceptions (ServletException and
IOException), you are required to include them in the method declaration.
Finally, you must import classes in java.io (for PrintWriter, etc.),
javax.servlet (for HttpServlet, etc.), and javax.servlet.http (for
HttpServletRequest and HttpServletResponse).

However, there is no need to memorize the method signature and import state-
ments. Instead, simply download the preceding template from the source code archive
at http://www.coreservlets.com/ and use it as a starting point for your servlets.

3.2 A Servlet That
Generates Plain Text

Listing 3.2 shows a simple servlet that outputs plain text, with the output shown in
Figure 3–2. Before we move on, it is worth spending some time reviewing the pro-
cess of installing, compiling, and running this simple servlet. See Chapter 2 (Server
Setup and Configuration) for a much more detailed description of the process.

First, be sure that you’ve already verified the basics:

• That your server is set up properly as described in Section 2.3
(Configure the Server).

• That your development CLASSPATH refers to the necessary three
entries (the servlet JAR file, your top-level development directory,
and “.”) as described in Section 2.7 (Set Up Your Development
Environment).

• That all of the test cases of Section 2.8 (Test Your Setup) execute
successfully.

Second, type “javac HelloWorld.java” or tell your development environ-
ment to compile the servlet (e.g., by clicking Build in your IDE or selecting Com-
pile from the emacs JDE menu). This step will compile your servlet to create
HelloWorld.class.

Third, move HelloWorld.class to the directory that your server uses to store serv-
lets that are in the default Web application. The exact location varies from server to
server, but is typically of the form install_dir/.../WEB-INF/classes (see Section 2.10 for
details). For Tomcat you use install_dir/webapps/ROOT/WEB-INF/classes, for JRun
you use install_dir/servers/default/default-ear/default-war/WEB-INF/classes, and for
Resin you use install_dir/doc/WEB-INF/classes. Alternatively, you can use one of the
techniques of Section 2.9 (Establish a Simplified Deployment Method) to automati-
cally place the class files in the appropriate location.

P
lease see updated setup inform

ation at
http://w

w
w

.coreservlets.com
/A

pache-Tom
cat-Tutorial/

3.2 A Servlet That Generates Plain Text 69

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Finally, invoke your servlet. This last step involves using either the default URL of
http://host/servlet/ServletName or a custom URL defined in the web.xml file as
described in Section 2.11 (Web Applications: A Preview). During initial develop-
ment, you will almost certainly find it convenient to use the default URL so that you
don’t have to edit the web.xml file each time you test a new servlet. When you deploy
real applications, however, you almost always disable the default URL and assign
explicit URLs in the web.xml file (see Section 2.11, “Web Applications: A Preview”).
In fact, servers are not absolutely required to support the default URL, and a few,
most notably BEA WebLogic, do not.

Figure 3–2 shows the servlet being accessed by means of the default URL, with
the server running on the local machine.

Figure 3–2 Result of http://localhost/servlet/HelloWorld.

Listing 3.2 HelloWorld.java

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class HelloWorld extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 PrintWriter out = response.getWriter();
 out.println("Hello World");
 }
}

Chapter 3 ■ Servlet Basics70

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

3.3 A Servlet That Generates HTML

Most servlets generate HTML, not plain text as in the previous example. To generate
HTML, you add three steps to the process just shown:

1. Tell the browser that you’re sending it HTML.
2. Modify the println statements to build a legal Web page.
3. Check your HTML with a formal syntax validator.

You accomplish the first step by setting the HTTP Content-Type response
header to text/html. In general, headers are set by the setHeader method of
HttpServletResponse, but setting the content type is such a common task that
there is also a special setContentType method just for this purpose. The way to
designate HTML is with a type of text/html, so the code would look like this:

response.setContentType("text/html");

Although HTML is the most common kind of document that servlets create, it is
not unusual for servlets to create other document types. For example, it is quite com-
mon to use servlets to generate Excel spreadsheets (content type application/
vnd.ms-excel—see Section 7.3), JPEG images (content type image/jpeg—see
Section 7.5), and XML documents (content type text/xml). Also, you rarely use
servlets to generate HTML pages that have relatively fixed formats (i.e., whose lay-
out changes little for each request); JSP is usually more convenient in such a case.
JSP is discussed in Part II of this book (starting in Chapter 10).

Don’t be concerned if you are not yet familiar with HTTP response headers; they
are discussed in Chapter 7. However, you should note now that you need to set
response headers before actually returning any of the content with the PrintWriter.
That’s because an HTTP response consists of the status line, one or more headers, a
blank line, and the actual document, in that order. The headers can appear in any
order, and servlets buffer the headers and send them all at once, so it is legal to set the
status code (part of the first line returned) even after setting headers. But servlets do
not necessarily buffer the document itself, since users might want to see partial results
for long pages. Servlet engines are permitted to partially buffer the output, but the
size of the buffer is left unspecified. You can use the getBufferSize method of
HttpServletResponse to determine the size, or you can use setBufferSize to
specify it. You can set headers until the buffer fills up and is actually sent to the client.
If you aren’t sure whether the buffer has been sent, you can use the isCommitted
method to check. Even so, the best approach is to simply put the setContentType
line before any of the lines that use the PrintWriter.

3.3 A Servlet That Generates HTML 71

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Core Warning

You must set the content type before transmitting the actual document.

The second step in writing a servlet that builds an HTML document is to have your
println statements output HTML, not plain text. Listing 3.3 shows HelloServlet.java,
the sample servlet used in Section 2.8 to verify that the server is functioning properly.
As Figure 3–3 illustrates, the browser formats the result as HTML, not as plain text.

Listing 3.3 HelloServlet.java

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** Simple servlet used to test server. */

public class HelloServlet extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 String docType =
 "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +
 "Transitional//EN\">\n";
 out.println(docType +
 "<HTML>\n" +
 "<HEAD><TITLE>Hello</TITLE></HEAD>\n" +
 "<BODY BGCOLOR=\"#FDF5E6\">\n" +
 "<H1>Hello</H1>\n" +
 "</BODY></HTML>");
 }
}

Chapter 3 ■ Servlet Basics72

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Figure 3–3 Result of http://localhost/servlet/HelloServlet.

The final step is to check that your HTML has no syntax errors that could cause
unpredictable results on different browsers. See Section 3.5 (Simple HTML-Build-
ing Utilities) for a discussion of HTML validators.

3.4 Servlet Packaging

In a production environment, multiple programmers can be developing servlets for
the same server. So, placing all the servlets in the same directory results in a massive,
hard-to-manage collection of classes and risks name conflicts when two developers
inadvertently choose the same name for a servlet or a utility class. Now, Web applica-
tions (see Section 2.11) help with this problem by dividing things up into separate
directories, each with its own set of servlets, utility classes, JSP pages, and HTML
files. However, since even a single Web application can be large, you still need the
standard Java solution for avoiding name conflicts: packages. Besides, as you will see
later, custom classes used by JSP pages should always be in packages. You might as
well get in the habit early.

When you put your servlets in packages, you need to perform the following two
additional steps.

1. Place the files in a subdirectory that matches the intended
package name. For example, we’ll use the coreservlets package
for most of the rest of the servlets in this book. So, the class files need
to go in a subdirectory called coreservlets. Remember that case mat-
ters for both package names and directory names, regardless of what
operating system you are using.

2. Insert a package statement in the class file. For instance, for a
class to be in a package called somePackage, the class should be in
the somePackage directory and the first non-comment line of the file
should read

3.4 Servlet Packaging 73

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

package somePackage;

For example, Listing 3.4 presents a variation of the HelloServlet
class that is in the coreservlets package and thus the coreserv-
lets directory. As discussed in Section 2.8 (Test Your Setup), the class
file should be placed in install_dir/webapps/ROOT/WEB-INF/classes/
coreservlets for Tomcat, install_dir/servers/default/default-ear/
default-war/WEB-INF/classes/coreservlets for JRun, and install_dir/
doc/WEB-INF/classes/coreservlets for Resin. Other servers have
similar installation locations.

Figure 3–4 shows the servlet accessed by means of the default URL.

Listing 3.4 coreservlets/HelloServlet2.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** Simple servlet for testing the use of packages. */

public class HelloServlet2 extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 String docType =
 "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +
 "Transitional//EN\">\n";
 out.println(docType +
 "<HTML>\n" +
 "<HEAD><TITLE>Hello (2)</TITLE></HEAD>\n" +
 "<BODY BGCOLOR=\"#FDF5E6\">\n" +
 "<H1>Hello (2)</H1>\n" +
 "</BODY></HTML>");
 }
}

Chapter 3 ■ Servlet Basics74

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Figure 3–4 Result of http://localhost/servlet/coreservlets.HelloServlet2.

3.5 Simple HTML-Building Utilities

As you probably already know, an HTML document is structured as follows:

<!DOCTYPE ...>

<HTML>

<HEAD><TITLE>...</TITLE>...</HEAD>

<BODY ...>...</BODY>

</HTML>

When using servlets to build the HTML, you might be tempted to omit part of
this structure, especially the DOCTYPE line, noting that virtually all major browsers
ignore it even though the HTML specifications require it. We strongly discourage
this practice. The advantage of the DOCTYPE line is that it tells HTML validators
which version of HTML you are using so they know which specification to check
your document against. These validators are valuable debugging services, helping
you catch HTML syntax errors that your browser guesses well on but that other
browsers will have trouble displaying.

The two most popular online validators are the ones from the World Wide Web Con-
sortium (http://validator.w3.org/) and from the Web Design Group (http://www.html-
help.com/tools/validator/). They let you submit a URL, then they retrieve the page,
check the syntax against the formal HTML specification, and report any errors to you.
Since, to a client, a servlet that generates HTML looks exactly like a regular Web page, it
can be validated in the normal manner unless it requires POST data to return its result.
Since GET data is attached to the URL, you can even send the validators a URL that
includes GET data. If the servlet is available only inside your corporate firewall, simply
run it, save the HTML to disk, and choose the validator’s File Upload option.

3.5 Simple HTML-Building Utilities 75

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Core Approach

Use an HTML validator to check the syntax of pages that your servlets
generate.

Admittedly, it is sometimes a bit cumbersome to generate HTML with println
statements, especially long tedious lines like the DOCTYPE declaration. Some people
address this problem by writing lengthy HTML-generation utilities, then use the
utilities throughout their servlets. We’re skeptical of the usefulness of such an exten-
sive library. First and foremost, the inconvenience of generating HTML program-
matically is one of the main problems addressed by JavaServer Pages (see Chapter
10, “Overview of JSP Technology”). Second, HTML generation routines can be cum-
bersome and tend not to support the full range of HTML attributes (CLASS and ID
for style sheets, JavaScript event handlers, table cell background colors, and so forth).

Despite the questionable value of a full-blown HTML generation library, if you
find you’re repeating the same constructs many times, you might as well create a sim-
ple utility class that simplifies those constructs. After all, you’re working with the Java
programming language; don’t forget the standard object-oriented programming prin-
ciple of reusing, not repeating, code. Repeating identical or nearly identical code
means that you have to change the code lots of different places when you inevitably
change your approach.

For standard servlets, two parts of the Web page (DOCTYPE and HEAD) are
unlikely to change and thus could benefit from being incorporated into a simple util-
ity file. These are shown in Listing 3.5, with Listing 3.6 showing a variation of the
HelloServlet class that makes use of this utility. We’ll add a few more utilities
throughout the book.

Listing 3.5 coreservlets/ServletUtilities.java

package coreservlets;

import javax.servlet.*;
import javax.servlet.http.*;

/** Some simple time savers. Note that most are static methods. */

public class ServletUtilities {
 public static final String DOCTYPE =
 "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +
 "Transitional//EN\">";

Chapter 3 ■ Servlet Basics76

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

After you compile HelloServlet3.java (which results in ServletUtilities.java being
compiled automatically), you need to move the two class files to the coreservlets sub-
directory of the server’s default deployment location (.../WEB-INF/classes; review
Section 2.8 for details). If you get an “Unresolved symbol” error when compiling
HelloServlet3.java, go back and review the CLASSPATH settings described in Section
2.7 (Set Up Your Development Environment), especially the part about including
the top-level development directory in the CLASSPATH. Figure 3–5 shows the result
when the servlet is invoked with the default URL.

 public static String headWithTitle(String title) {
 return(DOCTYPE + "\n" +
 "<HTML>\n" +
 "<HEAD><TITLE>" + title + "</TITLE></HEAD>\n");
 }

...
}

Listing 3.6 coreservlets/HelloServlet3.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** Simple servlet for testing the use of packages
 * and utilities from the same package.
 */

public class HelloServlet3 extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 String title = "Hello (3)";
 out.println(ServletUtilities.headWithTitle(title) +
 "<BODY BGCOLOR=\"#FDF5E6\">\n" +
 "<H1>" + title + "</H1>\n" +
 "</BODY></HTML>");
 }
}

Listing 3.5 coreservlets/ServletUtilities.java (continued)

3.6 The Servlet Life Cycle 77

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Figure 3–5 Result of http://localhost/servlet/coreservlets.HelloServlet3.

3.6 The Servlet Life Cycle

In Section 1.4 (The Advantages of Servlets Over “Traditional” CGI) we referred to
the fact that only a single instance of each servlet gets created, with each user request
resulting in a new thread that is handed off to doGet or doPost as appropriate.
We’ll now be more specific about how servlets are created and destroyed, and how
and when the various methods are invoked. We summarize here, then elaborate in
the following subsections.

When the servlet is first created, its init method is invoked, so init is where you
put one-time setup code. After this, each user request results in a thread that calls the
service method of the previously created instance. Multiple concurrent requests
normally result in multiple threads calling service simultaneously, although your
servlet can implement a special interface (SingleThreadModel) that stipulates that
only a single thread is permitted to run at any one time. The service method then
calls doGet, doPost, or another doXxx method, depending on the type of HTTP
request it received. Finally, if the server decides to unload a servlet, it first calls the
servlet’s destroy method.

The service Method

Each time the server receives a request for a servlet, the server spawns a new thread
and calls service. The service method checks the HTTP request type (GET,
POST, PUT, DELETE, etc.) and calls doGet, doPost, doPut, doDelete, etc., as
appropriate. A GET request results from a normal request for a URL or from an
HTML form that has no METHOD specified. A POST request results from an HTML
form that specifically lists POST as the METHOD. Other HTTP requests are generated
only by custom clients. If you aren’t familiar with HTML forms, see Chapter 19
(Creating and Processing HTML Forms).

Chapter 3 ■ Servlet Basics78

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Now, if you have a servlet that needs to handle both POST and GET requests iden-
tically, you may be tempted to override service directly rather than implementing
both doGet and doPost. This is not a good idea. Instead, just have doPost call
doGet (or vice versa), as below.

public void doGet(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException {
// Servlet code

}

public void doPost(HttpServletRequest request,
 HttpServletResponse response)

throws ServletException, IOException {
doGet(request, response);

}

Although this approach takes a couple of extra lines of code, it has several advan-
tages over directly overriding service. First, you can later add support for other
HTTP request methods by adding doPut, doTrace, etc., perhaps in a subclass.
Overriding service directly precludes this possibility. Second, you can add support
for modification dates by adding a getLastModified method, as illustrated in
Listing 3.7. Since getLastModified is invoked by the default service method,
overriding service eliminates this option. Finally, service gives you automatic
support for HEAD, OPTION, and TRACE requests.

Core Approach

If your servlet needs to handle both GET and POST identically, have your
doPost method call doGet, or vice versa. Don’t override service.

The doGet, doPost, and doXxx Methods
These methods contain the real meat of your servlet. Ninety-nine percent of the
time, you only care about GET or POST requests, so you override doGet and/or
doPost. However, if you want to, you can also override doDelete for DELETE
requests, doPut for PUT, doOptions for OPTIONS, and doTrace for TRACE.
Recall, however, that you have automatic support for OPTIONS and TRACE.

Normally, you do not need to implement doHead in order to handle HEAD
requests (HEAD requests stipulate that the server should return the normal HTTP
headers, but no associated document). You don’t normally need to implement
doHead because the system automatically calls doGet and uses the resultant status
line and header settings to answer HEAD requests. However, it is occasionally useful

3.6 The Servlet Life Cycle 79

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

to implement doHead so that you can generate responses to HEAD requests (i.e.,
requests from custom clients that want just the HTTP headers, not the actual docu-
ment) more quickly—without building the actual document output.

The init Method
Most of the time, your servlets deal only with per-request data, and doGet or
doPost are the only life-cycle methods you need. Occasionally, however, you want to
perform complex setup tasks when the servlet is first loaded, but not repeat those
tasks for each request. The init method is designed for this case; it is called when
the servlet is first created, and not called again for each user request. So, it is used for
one-time initializations, just as with the init method of applets. The servlet is nor-
mally created when a user first invokes a URL corresponding to the servlet, but you
can also specify that the servlet be loaded when the server is first started (see the
chapter on the web.xml file in Volume 2 of this book).

The init method definition looks like this:

public void init() throws ServletException {
// Initialization code...

}

The init method performs two varieties of initializations: general initializations
and initializations controlled by initialization parameters.

General Initializations
With the first type of initialization, init simply creates or loads some data that will
be used throughout the life of the servlet, or it performs some one-time computation.
If you are familiar with applets, this task is analogous to an applet calling getImage
to load image files over the network: the operation only needs to be performed once,
so it is triggered by init. Servlet examples include setting up a database connection
pool for requests that the servlet will handle or loading a data file into a HashMap.

Listing 3.7 shows a servlet that uses init to do two things.
First, it builds an array of 10 integers. Since these numbers are based upon com-

plex calculations, we don’t want to repeat the computation for each request. So,
doGet looks up the values that init computed, instead of generating them each
time. The results of this technique are shown in Figure 3–6.

Second, since the output of the servlet does not change except when the server is
rebooted, init also stores a page modification date that is used by the getLast-
Modified method. This method should return a modification time expressed in mil-
liseconds since 1970, as is standard with Java dates. The time is automatically
converted to a date in GMT appropriate for the Last-Modified header. More
importantly, if the server receives a conditional GET request (one specifying that the
client only wants pages marked If-Modified-Since a particular date), the system

Chapter 3 ■ Servlet Basics80

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

compares the specified date to that returned by getLastModified, returning the
page only if it has been changed after the specified date. Browsers frequently make
these conditional requests for pages stored in their caches, so supporting conditional
requests helps your users (they get faster results) and reduces server load (you send
fewer complete documents). Since the Last-Modified and If-Modified-Since
headers use only whole seconds, the getLastModified method should round times
down to the nearest second.

Listing 3.7 coreservlets/LotteryNumbers.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** Example using servlet initialization and the
 * getLastModified method.
*/

public class LotteryNumbers extends HttpServlet {
 private long modTime;
 private int[] numbers = new int[10];

 /** The init method is called only when the servlet is first
 * loaded, before the first request is processed.
 */

 public void init() throws ServletException {
 // Round to nearest second (i.e., 1000 milliseconds)
 modTime = System.currentTimeMillis()/1000*1000;
 for(int i=0; i<numbers.length; i++) {
 numbers[i] = randomNum();
 }
 }

 /** Return the list of numbers that init computed. */

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 String title = "Your Lottery Numbers";
 String docType =
 "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +
 "Transitional//EN\">\n";

3.6 The Servlet Life Cycle 81

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

 out.println(docType +
 "<HTML>\n" +
 "<HEAD><TITLE>" + title + "</TITLE></HEAD>\n" +
 "<BODY BGCOLOR=\"#FDF5E6\">\n" +
 "<H1 ALIGN=CENTER>" + title + "</H1>\n" +
 "Based upon extensive research of " +
 "astro-illogical trends, psychic farces, " +
 "and detailed statistical claptrap, " +
 "we have chosen the " + numbers.length +
 " best lottery numbers for you." +
 "");
 for(int i=0; i<numbers.length; i++) {
 out.println(" " + numbers[i]);
 }
 out.println("" +
 "</BODY></HTML>");
 }

 /** The standard service method compares this date against
 * any date specified in the If-Modified-Since request header.
 * If the getLastModified date is later or if there is no
 * If-Modified-Since header, the doGet method is called
 * normally. But if the getLastModified date is the same or
 * earlier, the service method sends back a 304 (Not Modified)
 * response and does not call doGet. The browser should
 * use its cached version of the page in such a case.
 */

 public long getLastModified(HttpServletRequest request) {
 return(modTime);
 }

 // A random int from 0 to 99.

 private int randomNum() {
 return((int)(Math.random() * 100));
 }
}

Listing 3.7 coreservlets/LotteryNumbers.java (continued)

Chapter 3 ■ Servlet Basics82

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Figure 3–6 Result of the LotteryNumbers servlet.

Figures 3–7 and 3–8 show the result of requests for the same servlet with two
slightly different If-Modified-Since dates. To set the request headers and see
the response headers, we used WebClient, a Java application that lets you inter-
actively set up HTTP requests, submit them, and see the “raw” results. The code
for WebClient is available at the source code archive on the book’s home page
(http://www.coreservlets.com/).

3.6 The Servlet Life Cycle 83

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Figure 3–7 Accessing the LotteryNumbers servlet results in normal response (with
the document sent to the client) in two situations: when there is an unconditional GET
request or when there is a conditional request that specifies a date before servlet
initialization. Code for the WebClient program (used here to interactively connect to the
server) is available at the book’s source code archive at http://www.coreservlets.com/.

Chapter 3 ■ Servlet Basics84

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Figure 3–8 Accessing the LotteryNumbers servlet results in a 304 (Not Modified)
response with no actual document in one situation: when a conditional GET request is
received that specifies a date at or after servlet initialization.

Initializations Controlled by Initialization Parameters
In the previous example, the init method computed some data that was used by the
doGet and getLastModified methods. Although this type of general initialization
is quite common, it is also common to control the initialization by the use of initial-
ization parameters. To understand the motivation for init parameters, you need to
understand the categories of people who might want to customize the way a servlet
or JSP page behaves. There are three such groups:

1. Developers.
2. End users.
3. Deployers.

3.6 The Servlet Life Cycle 85

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Developers change the behavior of a servlet by changing the code. End users
change the behavior of a servlet by providing data to an HTML form (assuming that
the developer has written the servlet to look for this data). But what about deployers?
There needs to be a way to let administrators move servlets from machine to
machine and change certain parameters (e.g., the address of a database, the size of a
connection pool, or the location of a data file) without modifying the servlet source
code. Providing this capability is the purpose of init parameters.

Because the use of servlet initialization parameters relies heavily on the deploy-
ment descriptor (web.xml), we postpone details and examples on init parameters
until the deployment descriptor chapter in Volume 2 of this book. But, here is a brief
preview:

1. Use the web.xml servlet element to give a name to your servlet.

2. Use the web.xml servlet-mapping element to assign a custom
URL to your servlet. You never use default URLs of the form
http://.../servlet/ServletName when using init parameters. In fact,
these default URLs, although extremely convenient during initial
development, are almost never used in deployment scenarios.

3. Add init-param subelements to the web.xml servlet element to
assign names and values of initialization parameters.

4. From within your servlet’s init method, call getServletConfig
to obtain a reference to the ServletConfig object.

5. Call the getInitParameter method of ServletConfig with the
name of the init parameter. The return value is the value of the init
parameter or null if no such init parameter is found in the web.xml
file.

The destroy Method

The server may decide to remove a previously loaded servlet instance, perhaps
because it is explicitly asked to do so by the server administrator or perhaps because
the servlet is idle for a long time. Before it does, however, it calls the servlet’s
destroy method. This method gives your servlet a chance to close database connec-
tions, halt background threads, write cookie lists or hit counts to disk, and perform
other such cleanup activities. Be aware, however, that it is possible for the Web
server to crash (remember those California power outages?). So, don’t count on
destroy as the only mechanism for saving state to disk. If your servlet performs
activities like counting hits or accumulating lists of cookie values that indicate special
access, you should also proactively write the data to disk periodically.

Chapter 3 ■ Servlet Basics86

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

3.7 The SingleThreadModel Interface

Normally, the system makes a single instance of your servlet and then creates a new
thread for each user request. This means that if a new request comes in while a pre-
vious request is still executing, multiple threads can concurrently be accessing the
same servlet object. Consequently, your doGet and doPost methods must be care-
ful to synchronize access to fields and other shared data (if any) since multiple
threads may access the data simultaneously. Note that local variables are not shared
by multiple threads, and thus need no special protection.

In principle, you can prevent multithreaded access by having your servlet imple-
ment the SingleThreadModel interface, as below.

public class YourServlet extends HttpServlet

implements SingleThreadModel {

...

}

If you implement this interface, the system guarantees that there is never more
than one request thread accessing a single instance of your servlet. In most cases, it
does so by queuing all the requests and passing them one at a time to a single servlet
instance. However, the server is permitted to create a pool of multiple instances,
each of which handles one request at a time. Either way, this means that you don’t
have to worry about simultaneous access to regular fields (instance variables) of the
servlet. You do, however, still have to synchronize access to class variables (static
fields) or shared data stored outside the servlet.

Although SingleThreadModel prevents concurrent access in principle, in prac-
tice there are two reasons why it is usually a poor choice.

First, synchronous access to your servlets can significantly hurt performance
(latency) if your servlet is accessed frequently. When a servlet waits for I/O, the
server cannot handle pending requests for the same servlet. So, think twice before
using the SingleThreadModel approach. Instead, consider synchronizing only the
part of the code that manipulates the shared data.

The second problem with SingleThreadModel stems from the fact that the
specification permits servers to use pools of instances instead of queueing up the
requests to a single instance. As long as each instance handles only one request at a
time, the pool-of-instances approach satisfies the requirements of the specification.
But, it is a bad idea.

Suppose, on one hand, that you are using regular non-static instance variables
(fields) to refer to shared data. Sure, SingleThreadModel prevents concurrent
access, but it does so by throwing out the baby with the bath water: each servlet
instance has a separate copy of the instance variables, so the data is no longer shared
properly.

3.7 The SingleThreadModel Interface 87

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

On the other hand, suppose that you are using static instance variables to refer to
the shared data. In that case, the pool-of-instances approach to SingleThreadModel
provides no advantage whatsoever; multiple requests (using different instances) can
still concurrently access the static data.

Now, SingleThreadModel is still occasionally useful. For example, it can be
used when the instance variables are reinitialized for each request (e.g., when they
are used merely to simplify communication among methods). But, the problems with
SingleThreadModel are so severe that it is deprecated in the servlet 2.4 (JSP 2.0)
specification. You are much better off using explicit synchronized blocks.

Core Warning

Avoid implementing SingleThreadModel for high-traffic servlets. Use
it with great caution at other times. For production-level code, explicit
code synchronization is almost always better. SingleThreadModel is
deprecated in version 2.4 of the servlet specification.

For example, consider the servlet of Listing 3.8 that attempts to assign unique
user IDs to each client (unique until the server restarts, that is). It uses an instance
variable (field) called nextID to keep track of which ID should be assigned next,
and uses the following code to output the ID.

String id = "User-ID-" + nextID;
out.println("<H2>" + id + "</H2>");
nextID = nextID + 1;

Now, suppose you were very careful in testing this servlet. You put it in a subdirec-
tory called coreservlets, compiled it, and copied the coreservlets directory to the
WEB-INF/classes directory of the default Web application (see Section 2.10, “Deploy-
ment Directories for Default Web Application: Summary”). You started the server. You
repeatedly accessed the servlet with http://localhost/servlet/coreservlets.UserIDs.
Every time you accessed it, you got a different value (Figure 3–9). So the code is cor-
rect, right? Wrong! The problem occurs only when there are multiple simultaneous
accesses to the servlet. Even then, it occurs only once in a while. But, in a few cases,
the first client could read the nextID field and have its thread preempted before it
incremented the field. Then, a second client could read the field and get the same
value as the first client. Big trouble! For example, there have been real-world
e-commerce applications where customer purchases were occasionally charged to
the wrong client’s credit card, precisely because of such a race condition in the gen-
eration of user IDs.

Chapter 3 ■ Servlet Basics88

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Now, if you are familiar with multithreaded programming, the problem was very
obvious to you. The question is, what is the proper solution? Here are three possibilities.

1. Shorten the race. Remove the third line of the code snippet and
change the first line to the following.

String id = "User-ID-" + nextID++;

Boo! This approach decreases the likelihood of an incorrect answer,
but does not eliminate the possibility. In many scenarios, lowering the
probability of a wrong answer is a bad thing, not a good thing: it
merely means that the problem is less likely to be detected in testing,
and more likely to occur after being fielded.

2. Use SingleThreadModel. Change the servlet class definition to the
following.

public class UserIDs extends HttpServlet
implements SingleThreadModel {

Will this work? If the server implements SingleThreadModel by
queueing up all the requests, then, yes, this will work. But at a perfor-
mance cost if there is a lot of concurrent access. Even worse, if the
server implements SingleThreadModel by making a pool of servlet
instances, this approach will totally fail because each instance will have
its own nextID field. Either server implementation approach is legal,
so this “solution” is no solution at all.

3. Synchronize the code explicitly. Use the standard synchronization
construct of the Java programming language. Start a synchronized
block just before the first access to the shared data, and end the block
just after the last update to the data, as follows.

synchronized(this) {
String id = "User-ID-" + nextID;
out.println("<H2>" + id + "</H2>");
nextID = nextID + 1;

}

This technique tells the system that, once a thread has entered the
above block of code (or any other synchronized section labelled
with the same object reference), no other thread is allowed in until the
first thread exits. This is the solution you have always used in the Java
programming language. It is the right one here, too. Forget error-
prone and low-performance SingleThreadModel shortcuts; fix race
conditions the right way.

3.7 The SingleThreadModel Interface 89

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Listing 3.8 coreservlets/UserIDs.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** Servlet that attempts to give each user a unique
 * user ID. However, because it fails to synchronize
 * access to the nextID field, it suffers from race
 * conditions: two users could get the same ID.
 */

public class UserIDs extends HttpServlet {
 private int nextID = 0;

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 String title = "Your ID";
 String docType =
 "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +
 "Transitional//EN\">\n";
 out.println(docType +
 "<HTML>\n" +
 "<HEAD><TITLE>" + title + "</TITLE></HEAD>\n" +
 "<CENTER>\n" +
 "<BODY BGCOLOR=\"#FDF5E6\">\n" +
 "<H1>" + title + "</H1>\n");
 String id = "User-ID-" + nextID;
 out.println("<H2>" + id + "</H2>");
 nextID = nextID + 1;
 out.println("</BODY></HTML>");
 }
}

Chapter 3 ■ Servlet Basics90

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Figure 3–9 Result of the UserIDs servlet.

3.8 Servlet Debugging

Naturally, when you write servlets, you never make mistakes. However, some of your
colleagues might make an occasional error, and you can pass this advice on to them.
Seriously, though, debugging servlets can be tricky because you don’t execute them
directly. Instead, you trigger their execution by means of an HTTP request, and they
are executed by the Web server. This remote execution makes it difficult to insert
break points or to read debugging messages and stack traces. So, approaches to serv-
let debugging differ somewhat from those used in general development. Here are 10
general strategies that can make your life easier.

1. Use print statements.
With most server vendors, if you run the server on your desktop, a
window pops up that displays standard output (i.e., the result of
System.out.println statements). “What?” you say, “Surely you
aren’t advocating something as old-fashioned as print statements?”
Well, true, there are more sophisticated debugging techniques. And if
you are familiar with them, by all means use them. But you’d be sur-
prised how useful it is to just gather basic information about how your
program is operating. The init method doesn’t seem to work? Insert
a print statement, restart the server, and see if the print statement is
displayed in the standard output window. Perhaps you declared init
incorrectly, so your version isn’t being called? Get a NullPointer-
Exception? Insert a couple of print statements to find out which line
of code generated the error and which object on that line was null.
When in doubt, gather more information.

3.8 Servlet Debugging 91

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

2. Use an integrated debugger in your IDE.
Many integrated development environments (IDEs) have sophisti-
cated debugging tools that can be integrated with your servlet and JSP
container. The Enterprise editions of IDEs like Borland JBuilder,
Oracle JDeveloper, IBM WebSphere Studio, Eclipse, BEA WebLogic
Studio, Sun ONE Studio, etc., typically let you insert breakpoints,
trace method calls, and so on. Some will even let you connect to a
server running on a remote system.

3. Use the log file.
The HttpServlet class has a method called log that lets you write
information into a logging file on the server. Reading debugging mes-
sages from the log file is a bit less convenient than watching them
directly from a window as with the two previous approaches, but using
the log file is an option even when running on a remote server; in such
a situation, print statements are rarely useful and only the advanced
IDEs support remote debugging. The log method has two variations:
one that takes a String, and the other that takes a String and a
Throwable (an ancestor class of Exception). The exact location of
the log file is server-specific, but is generally clearly documented or
can be found in subdirectories of the server installation directory.

4. Use Apache Log4J.
Log4J is a package from the Apache Jakarta Project—the same
project that manages Tomcat (one of the sample servers used in the
book) and Struts (an MVC framework discussed in Volume 2 of this
book). With Log4J, you semi-permanently insert debugging state-
ments in your code and use an XML-based configuration file to
control which are invoked at request time. Log4J is fast, flexible,
convenient, and becoming more popular by the day. For details, see
http://jakarta.apache.org/log4j/.

5. Write separate classes.
One of the basic principles of good software design is to put com-
monly used code into a separate function or class so you don’t need to
keep rewriting it. That principle is even more important when you are
writing servlets, since these separate classes can often be tested inde-
pendently of the server. You can even write a test routine, with a
main, that can be used to generate hundreds or thousands of test
cases for your routines—not something you are likely to do if you have
to submit each test case by hand in a browser.

6. Plan ahead for missing or malformed data.
Are you reading form data from the client (Chapter 4)? Remember to
check whether it is null or an empty string. Are you processing
HTTP request headers (Chapter 5)? Remember that the headers are
optional and thus might be null in any particular request. Every time

Chapter 3 ■ Servlet Basics92

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

you
process data that comes directly or indirectly from a client, be sure to
consider the possibility that it was entered incorrectly or omitted
altogether.

7. Look at the HTML source.
If the result you see in the browser looks odd, choose View Source
from the browser’s menu. Sometimes a small HTML error like
<TABLE> instead of </TABLE> can prevent much of the page from
being viewed. Even better, use a formal HTML validator on the serv-
let’s output. See Section 3.5 (Simple HTML-Building Utilities) for a
discussion of this approach.

8. Look at the request data separately.
Servlets read data from the HTTP request, construct a response, and
send it back to the client. If something in the process goes wrong, you
want to discover if the cause is that the client is sending the wrong data
or that the servlet is processing it incorrectly. The EchoServer class,
discussed in Chapter 19 (Creating and Processing HTML Forms), lets
you submit HTML forms and get a result that shows you exactly how
the data arrived at the server. This class is merely a simple HTTP server
that, for all requests, constructs an HTML page showing what was sent.
Full source code is online at http://www.coreservlets.com/.

9. Look at the response data separately.
Once you look at the request data separately, you’ll want to do the same
for the response data. The WebClient class, discussed in the init
example of Section 3.6 (The Servlet Life Cycle), lets you connect to the
server interactively, send custom HTTP request data, and see every-
thing that comes back—HTTP response headers and all. Again, you can
download the source code from http://www.coreservlets.com/.

10. Stop and restart the server.
Servers are supposed to keep servlets in memory between requests,
not reload them each time they are executed. However, most servers
support a development mode in which servlets are supposed to be
automatically reloaded whenever their associated class file changes. At
times, however, some servers can get confused, especially when your
only change is to a lower-level class, not to the top-level servlet class.
So, if it appears that changes you make to your servlets are not
reflected in the servlet’s behavior, try restarting the server. Similarly,
the init method is run only when a servlet is first loaded, the
web.xml file (see Section 2.11) is read only when a Web application is
first loaded (although many servers have a custom extension for
reloading it), and certain Web application listeners (see Volume 2) are
triggered only when the server first starts. Restarting the server will
simplify debugging in all of those situations.

